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1. INTRODUCTION

A structure is said to be periodic, or repetitive, when its construction takes the form
of a spatially repeated cell; a honeycomb sandwich panel is a good example of
a two-dimensional (plate-like) periodic structure, whilst examples of
one-dimensional (beam-like) periodic structures include rail track supported on
equi-spaced sleepers, and trusses employed to provide a large span. A review of the
various approaches to their analysis was given by Noor [1] in 1988; more recently,
Mead [2] has provided an overview of the contributions made by researchers at the
University of Southampton. Noor described four approaches to the analysis of
large repetitive structures, these being

(a) Direct method in which the complete structure is analyzed as a system of
discrete "nite elements; computationally this is the least e$cient, as the
periodicity of the structure is not exploited.

(b) Direct ,eld method in which the displacements on either side of the typical
cell are related by "nite di!erence equations; this approach has been
developed extensively by Renton [3].

(c) Periodic structure approach, which typically employs a transfer matrix
relating a state vector of displacement and force components on either side of
the generic cell; application of Bloch's theorem leads to an eigenvalue
problem for propagation constants or frequencies. This approach has been
applied successfully to both one- and two-dimensional structures, and the
theory is highly developed [4}9].

(d) Substitute continuum approach in which the original structure is replaced by
a continuum whose properties are in some sense equivalent.

Periodic structures are analysed most e$ciently when the periodicity is taken into
account; in principle, this allows the behaviour of the complete structure to be
determined through analysis of a single cell (and a knowledge of the boundary
conditions if the structure is not of in"nite extent). Of the above, approaches (b) and
(c) do exploit the property of periodicity. On the other hand, the substitute
continuum approach (d) is appealing for a variety of reasons, particularly if one is
interested in the global (rather than local) behaviour of the structure, for example
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vibration and its feedback control, global buckling or thermal conductivity, these
being areas where the engineer is accustomed to thinking in terms of continuum
properties and theories.

The present paper describes an approach, applied to a one-dimensional
structure, which seeks to combine the best features of methods (c) and (d); periodic
structure theory is "rst employed to generate the equivalent continuum sti!ness
properties of a pin-jointed truss structure; inertia properties are determined by
elementary means. These properties are then employed in a variety of continuum
theories, for example the Euler}Bernoulli and Timoshenko theories for transverse
vibration, in order to predict the natural frequencies of the structure; comparison is
made with the predictions of a "nite element analysis of the complete structure
(Noor's direct method), which is taken as the benchmark for accuracy. A variety of
truss lengths and end conditions are considered. Agreement is found to be very good.

2. THE PIN-JOINTED FRAMEWORK AND ITS CONTINUUM PROPERTIES

A planar one-dimensional (beam-like) pin-jointed framework is shown in
Figure 1. Each member in the framework is of material having Young's modulus
E"200]109 N/m2, density o"8000 kg/m3. Horizontal and vertical members are
of length 1 m, and have cross-sectional area 1 cm2; diagonal members have length
J2 m. and cross-sectional area 0)5 cm2. These lengths, together with Young's
modulus, are regarded as being equally applicable to the continuum beam.

The procedure, for "nding the equivalent sti!ness continuum properties is
described fully in reference [10], and may be summarized as follows:

(a) Consider the single generic jth cell in Figure 1; ascribe half of the vertical
pin-jointed members to the preceding and following cells, so that the vertical
members are treated as having cross-sectional area 0)5 cm2.
Figure 1. Planar pin-jointed framework, shown with simply supported ends. The length of the truss
is equal to the number of cells, ¸.
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(b) Construct the sti!ness matrix K of the cell, and then partition and manipulate
to "nd the transfer matrix G, which has the properties of being symplectic,
defective and derogatory.

(c) Rigid-body displacements and the transmission modes of tension, bending
moment and shear are associated with the multiple eigenvalue j"1. The
eigenvectors pertain to rigid body displacements in the axial (x) and
transverse (y) directions. Coupled to these are principal vectors (or generalised
eigenvectors) which describe rigid-body rotation, and the force and moment
transmission modes; these are found using the reduced row echelon form,
which relates nodal force and displacement components in their simplest form.

The equivalent continuum properties are found to be: cross-sectional area
A"3)5224 cm2, second moment of area I"2)13061]10~4 m4, Poisson's ratio
l"0)2612, shear modulus G"E/2(1#l)"79)29]109 N/m2 and shear
coe$cient i"0)4956.

The inertia properties are found as follows:

(a) The mass per unit length m is calculated simply as the sum of the individual
masses of the members which constitute the generic cell, which has length
1 m. Thus, the cell consists of three horizontal members having length 1 m
and cross-sectional 1 cm2, four diagonal members having length J2m and
cross-sectional area 0)5 cm2, and four vertical members having length 1m
and cross-sectional area 0)5 cm2. The resulting mass per unit length is
calculated as 6)2627 kg/m; note that this property is exact (as opposed to
equivalent) in the sense that it could equally be obtained by weighting the
generic cell.

(b) The rotary moment of inertia of the cell is calculated as the sum of the
individual moments of inertia of the members about the centre of gravity of
the cell; this involves only the simple formula J"m¸2/12 for the moment of
inertia of the individual member about its own centre of gravity, and
application of the parallel axis theorem where appropriate. The rotary
moment of inertia per unit length is thus calculated as J"3)6761 kgm, and
again this property is exact.

3. CONTINUUM THEORIES

3.1. FLEXURAL VIBRATION

The two coupled equations of Timoshenko theory for a continuum beam are
normally written as
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For the continuum model of the periodic truss, the right-hand side inertia
parameters are modi"ed to read
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where m and J are mass and moment of inertia, respectively, per unit length. These
changes are necessary as the cross-sectional area, A, is the equivalent property
pertaining to axial sti!ness (EA/¸); similarly the second moment of area, I, is the
equivalent property pertaining to the #exural sti!ness (EI).

The single fourth order di!erential equation becomes
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For a simply supported beam, the centre line de#ection curve is

v (x, t)"sin
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sinut, n"1, 2, 3,2 etc. (4)

when the frequency predictions become:
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2 Rayleigh beam: set the inverse of the shear coe$cient i equal to zero in
equation (5), to give

u"A
nn
¸ B

2

S
EI

m#(nn/¸)2J
. (6)

3 Shear beam: set the moment of inertia J equal to zero in equation (5), to give
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4 Euler}Bernoulli beam: apply both of the above simpli"cations, to give
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3.2. LONGITUDINAL VIBRATION

The Raleigh di!erential equation governing longitudinal vibration of
a continuum rod, including the transverse inertia correction for Poisson's ratio
contraction is (see Love [11])
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where r
g

is the radius of gyration. For the continuum model of the periodic
structure, the inertia terms are modi"ed, to read
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For a "xed}"xed rod, the mode shape is

u(x, t)"sin
nnx
¸

sinut, n"1, 2, 3,2 etc. (11)

when the frequency predictions becomes:

1. Rayleigh:

u"

nn
¸ S

EA
m#(nn/¸)2l2Im/A)
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2. Bernoulli: set the second moment of area I equal to zero in equation (12), to
give
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The end conditions employed in all of the above continuum theories lead to
a (co)sinusoidal mode shape and, consequently, to relatively simple expressions for
the natural frequencies. As will become apparent in the discussion which follows,
best agreement with the "nite element predictions is provided by the shear beam,
and the Rayleigh rod theories, for bending and extensional vibration, respectively.
In addition to the above end conditions, a comparison has been made for a truss
having free}free end conditions, using these &&best'' theories. For extensional
vibration, it is noted that equation (12) is equally applicable to free}free end
conditions; the frequency equation of the shear beam theory, with free}free ends, is
recorded as

(r2!s2)sinh r¸sin s¸!2rscosh r¸cos s¸#2rs"0, (14)

where
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4. DISCUSSION OF RESULTS

Consider "rst the bending frequency predictions in Table 1 for a slender simply
supported truss having length ¸"30 m, and regard the ANSYS predictions as the
benchmark. The Euler}Bernoulli (EB) prediction is fairly accurate for the "rst two
frequencies, and quite inaccurate for the higher modes, which are not listed. The
third mode, for which the EB prediction is an unacceptable overestimate of 14)6%,
has a wavelength K"20 m, which is ten-fold the beam depth. For a continuum
beam of the same depth, the radius of gyration is r

g
"(3)~1@2"0)5774 and



TABLE 1

Comparison of natural frequencies (Hz) in bending; simply supported, ¸"30 m

n ANSYS Euler} Rayleigh Shear beam Timoshenko
Bernoulli beam beam

beam

1 4)4730 4)5526 4)5380 4)4777 4)4642
(]1)78%) (]1)45%) (]0)09%) ([0)20%)

2 17)0425 18)2105 17)9805 17)0929 16)9242
(]6)85%) (]5)5%) (]0)30%) ([0)69%)

3 35)7534 40)9737 39)8360 35)8833 35)2812
(]14)6%) (]11)42%) (]0)36%) ([1)32%)

4 58)5776 72)8420 69)3579 58)6946 57)4330
(]24)35%) (]18)40%) (]0)20%) ([1)95%)

5 83)9620 113)8157 105)6331 83)8148 81)8261
(]35)56%) (]25)81%) ([0)18%) ([2)54%)

6 110)8810 * * 110)1137 107)4627
([0)69%) ([3)08%)

7 138)7053 * * 136)9263 133)7426
([1)28%) ([3)58%)

8 167)0633 * * 163)8902 160)3163
([1)90%) ([4)04%)

9 195)7394 * * 190)8208 186)9847
([2)51%) ([4)47%)

10 224)6075 * * 217)6315 213)6373
([3)11%) ([4)88%)
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r
g
/K"0)0289; for such a ratio one would expect EB theory to provide acceptable

predictions. For the pseudo-continuum truss model, however, the equivalent radius
of gyration has the value r

g
"0)7777 when calculated as the ratio of equivalent

second moment of area to equivalent area, or r
g
"0)7662 when calculated as the

ratio of moment of inertia to mass (both per unit length); thus the truss is not as
slender as its overall dimensions "rst suggest. Moreover, the parameter E/iG is
approximately 3 for a continuum rectangular cross-section, while the equivalent
parameter for the truss model is approximately 5, indicating a cross-section which
is much more #exible in shear. Both these factors contribute to the failure of EB
theory to provide accurate frequency predictions at relatively low mode numbers.
For all modes the shear beam model provides best agreement (error less than
0)4%), overestimating at the lower and underestimating at the higher modes. The
Timoshenko model consistently underestimates, with a maximum error of
!2)54%. Comparing the e!ect of rotary inertia alone (Rayleigh), with the e!ect
of shear, one concludes that the latter is 3 to 4 times more important in terms of
depressing the EB frequency.

Next consider the predictions for the short beam in Table 2: as might be expected
from the above discussion, the EB prediction is inaccurate even for the lowest



TABLE 2

Comparison of natural frequencies (Hz) in bending; simply supported, ¸"10 m

n ANSYS Euler} Rayleigh Shear beam Timoshenko
Bernoulli beam beam

beam

1 35)6391 40)9737 39)8360 35)8833 35)2812
(]14)97%) (]11)78%) (]0)7%) ([1)00%)

2 110)0462 163)8946 147)6748 110)1137 107)4627
(]48)93%) (]34)19%) (]0)06%) ([2)35%)

3 193)6421 368)7629 298)9686 190)8208 186)9847
(!1)46%) ([3)44%)

4 278)7818 655)5784 472)2713 270)7825 266)6919
(!2)87%) ([4)34%)

5 362)9798 1024)3 654)6507 349)3771 345)4376
([3)75%) ([4)83%)
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mode, and the inclusion of shear is essential for accuracy. The e!ect of shear is now
2 to 3 times more important than that of rotary inertia. Again the shear beam
provides the best accuracy (#0)7 to !3)75%), while the Timoshenko model
consistently underestimates (!1 to !4)83%).

The predictions for extensional vibration are shown in Tables 3 and 4; for the
slender rod, Table 3, the elementary Bernoulli theory provides excellent agreement
(!0)2 to #0)5%), and inclusion of the e!ects of Poisson's ratio contraction
improves accuracy still further (!0)04 to !0)08%). However, it is doubtful
whether this improvement is worthwhile, if one bears in mind that the 1st, 2nd, 3rd,
4th and 5th extensional modes are, respectively, the 4th, 7th, 10th, 13th and 16th
vibration modes of the truss, the remainder in this range being bending modes not
predictable to such a high degree of accuracy. For the short rod, Table 4, agreement
is again very good; the inclusion of Poisson's ratio contraction does, in the main,
improve accuracy, but again this is probably not worthwhile given that the 1st,
2 and 3rd extensional modes are respectively, the 3rd, 6th and 10th vibration modes
of the truss; the remainder are bending modes, with the exception of the 8th modes
which is characterized by axial shear. Extensional modes higher than the 3rd are
not listed, as the ANSYS mode shapes indicate that one of the essential
characteristics of extensional vibration*that of plane sections remaining
plane*becomes unrealistic at higher modes.

Last, consider the "rst 20 natural frequencies of a free}free truss having length
¸"30 m, Table 5: only the Rayleigh rod and shear beam predictions are presented,
as these generally provided best agreement with the ANSYS predictions which are
again regarded as the benchmark. Of these 20 modes, 6 are extensional in nature
and can be predicted using the Rayleigh rod theory to an accuracy of
approximately $0)5%. The remaining 14 modes are #exural in nature and the
shear beam model provides agreement within approximately $2)5%. At frequencies



TABLE 3

Comparison of natural frequencies (Hz) in extension; ,xed-,xed, ¸"30 m

n ANSYS Bernoulli rod Rayleigh rod

1 55)9094 55)8985 55)8858
([0)02%) ([0)04%)

2 111)7594 111)7970 111)6959
(]0)03%) ([0)06%)

3 167)4796 167)6955 167)3550
(]0)13%) ([0)07%)

4 222)9749 223)5939 222)7888
(]0)28%) ([0)08%)

5 278)1058 279)4924 277)9246
(]0)5%) ([0)07%)

TABLE 4

Comparison of natural frequencies (Hz) in extension; ,xed-,xed, ¸"10 m

n ANSYS Bernoulli rod Rayleigh rod

1 167)6177 167)6955 167)3550
(]0)05%) ([0)16%)

2 333)0602 335)3909 332)6918
(]0)70%) ([0)11%)

3 489)5158 503)0864 494)1116
(]2)77%) (]0)94%)
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higher than those listed in Table 5, there is an increased density of modes, most of
which cannot be categorized simply as #exural or extensional. This occurs as the
semi-wavelength of bending vibration, which is approximately 2m for the 14th
bending mode, approaches the depth of the truss, so allowing the possibility of
depth-wise modes of vibration; this de"nes the extent to which the present
one-dimensional approach is useful for the prediction of natural frequencies.

5. CONCLUSIONS

Comparisons with "nite element predictions indicate that the combined
approach employing both periodic structure theory and well-known
one-dimensional continuum theories suitably modi"ed, can provide very good
accuracy, at least for the pin-jointed trusses considered here. For bending vibration,
where the inclusion of shear deformation is essential, comparison suggests that the
shear beam model, which neglects rotary inertia, provides the best accuracy.
However, it should be borne in mind that the consistent mass matrix formulation



TABLE 5

Comparison of ,rst 20 natural frequencies (Hz) of free}free truss, ¸"30 m; E denotes
extensional modes, as indicated by the ANS>S mode shape

Mode ANSYS Shear beam Rayleigh rod

1 9)924 10)1096 *

2 25)822 26)4373 *

3 47)032 48)2015 *

4 55)651 (E) * 55)8858
5 71)584 73)1775 *

6 98)164 99)8432 *

7 111)239 (E) * 111)6959
8 125)912 127)2510 *

9 154)302 154)8795 *

10 166)69 (E) * 167)3550
11 183)01 182)4645 *

12 211)826 209)8849 *

13 221)903 (E) * 222)7888
14 240)587 237)0946 *

15 269)121 264)0853 *

16 276)736 (E) * 277)9246
17 297)14 290)8663 *

18 324)073 317)4548 *

19 330)972 (E) * 332)6918
20 347)176 343)8698 *
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employed in the "nite element analysis leads to an overestimate of the natural
frequencies and it is quite possible that the Timoshenko predictions, which are
consistently lower than the ANSYS values, are the more accurate. Future work will
extend the approach to rigid-jointed frameworks, for which micro-polar continuum
descriptions may be necessary, and to provide experimental comparisons which
are, of course, the ultimate benchmark.
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